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Patient-Diagnosis Matrix

Data source: ICU patients at OSU Medical Center (2007-2010)



Questions

I How to characterize common factors underlying a set of
binary variables?

I Can we apply PCA to binary data?

Any implicit link between PCA and Gaussian distributions?

I How to extend PCA to exponential family data?

I Should we define those factors differently if prediction of a
response is concerned?

How to make use of the response?



Outline

I Dimensionality reduction for non-Gaussian data

{exponential family PCA, generalized PCA}

I Supervised dimensionality reduction for exponential family
data

{supervised generalized PCA, supervised matrix factorization}



Generalization of PCA
Collins et al. (2001), A generalization of principal components
analysis to the exponential family

I Draws on the ideas from the exponential family and
generalized linear models

I For Gaussian data, assume that xi ∼ Np(θi , Ip) and θi ∈ Rp

lies in a k dimensional subspace:

for a basis {b`}k`=1, θi =
k∑

`=1

ai`b` = Bp×kai

I To find Θ = [θij ], maximize the log likelihood or equivalently
minimize the negative log likelihood (or deviance):

n∑
i=1

‖xi − θi‖2 = ‖X −Θ‖2F = ‖X − AB>‖2F



Generalization of PCA
I According to Eckart-Young theorem, the best rank-k

approximation of X (= Un×pDp×pV>p×p) is given by the
rank-k truncated singular value decomposition UkDk︸ ︷︷ ︸

A

V>k︸︷︷︸
B>

I For exponential family data, factorize the matrix of natural
parameter values Θ as AB> with rank-k matrices An×k and
Bp×k (of orthogonal columns) by maximizing the log
likelihood

I For binary data X = [xij ] with P = [pij ], “logistic PCA” looks

for a factorization of Θ =
[
log pij

1−pij

]
= AB> that maximizes

`(X ; Θ) =
∑
i,j

{
xij(a>i bj∗)− log(1 + exp(a>i bj∗))

}

subject to B>B = Ik



Drawbacks of the Matrix Factorization Formulation

I Involves estimation of both case-specific (or row-specific)
scores A and variable-specific (or column-specific) factors
B: more of extension of SVD than PCA

I The number of parameters increases with the number of
observations

I The scores of generalized PC for new data involve
additional optimization while PC scores for standard PCA
are simple linear combinations of the data



Alternative Interpretation of Standard PCA

I Assuming that data are centered, minimize

n∑
i=1

‖xi − VV>xi‖2 = ‖X − XVV>‖2F

subject to V>V = Ik

I XVV> can be viewed as a rank-k projection of the matrix
of natural parameters (“means” in this case) of the
saturated model Θ̃ (best possible fit) for Gaussian data

I Standard PCA finds the best rank-k projection of Θ̃ by
minimizing the deviance under Gaussian distribution



Natural Parameters of the Saturated Model

I For an exponential family distribution with natural
parameter θ and pdf

f (x |θ) = exp (θx − b(θ) + c(x)) ,

E(X ) = b′(θ) and the canonical link function is the inverse
of b′.

θ b(θ) canonical link
N(µ,1) µ θ2/2 identity
Bernoulli(p) logit(p) log(1 + exp(θ)) logit
Poisson(λ) log(λ) exp(θ) log

I Take Θ̃ = [canonical link(xij)]



New Formulation of Logistic PCA

Landgraf and Lee (2015), Dimensionality Reduction for Binary
Data through the Projection of Natural Parameters

I Given xij ∼ Bernoulli(pij), the natural parameter (logit pij )
of the saturated model is

θ̃ij = logit(xij) =∞× (2xij − 1)

We will approximate θ̃ij ≈ m × (2xij − 1) for large m > 0

I Project Θ̃ to a k -dimensional subspace by using the
deviance D(X ; Θ) = −2{`(X ; Θ)− `(X ; Θ̃)} as a loss:

min
V∈Rp×k

D(X ; Θ̃VV>︸ ︷︷ ︸
Θ̂

) = −2
∑
i,j

{
xij θ̂ij − log(1 + exp(θ̂ij))

}

subject to V>V = Ik



Logistic PCA vs Logistic SVD
I The previous logistic SVD (matrix factorization) gives an

approximation of logit P:

Θ̂LSVD = AB>

I Alternatively, our logistic PCA gives

Θ̂LPCA = Θ̃V︸︷︷︸
A

V>,

which has much fewer parameters

I Computation of PC scores on new data only requires
matrix multiplication for logistic PCA while logistic SVD
requires fitting k -dimensional logistic regression for each
new observation

I Logistic SVD with additional A is prone to overfit



Geometry of Logistic PCA
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Figure: Logistic PCA projection in the natural parameter space with
m = 5 (left) and in the probability space (right) compared to the PCA
projection



New Formulation of Generalized PCA

Landgraf and Lee (2015), Generalized PCA: Projection of
Saturated Model Parameters

I The idea can be applied to any exponential family
distribution

I Project the matrix of natural parameters from the saturated
model Θ̃ to a k -dimensional subspace by using the
deviance D(X ; Θ) = −2{`(X ; Θ)− `(X ; Θ̃)} as a loss:

min
V∈Rp×k

D(X ; Θ̃VV>︸ ︷︷ ︸
Θ̂

)

subject to V>V = Ik

I If desired, main effects µ can be added to the
approximation of Θ:

Θ̂ = 1µ> + (Θ̃− 1µ>)VV>



MM Algorithm for Generalized PCA

I Majorize the objective function with a simpler objective at
each iterate, and minimize the majorizing function.
(Hunter and Lange, 2004)

I From the quadratic approximation of the Bernoulli deviance
at Θ(t), step t solution, and the fact that p(1− p) ≤ 1/4,

D(X ; 1µ> + (Θ̃− 1µ>)VV>)

≤ 1
4
‖1µ> + (Θ̃− 1µ>)VV> − Z (t+1)‖2F + C,

where Z (t+1) = Θ(t) + 4(X − P̂(t))

I Update Θ at step (t + 1):
averaging for µ(t+1) given V (t) and
eigen-analysis of a p × p matrix for V (t+1) given µ(t+1)



Medical Diagnosis Data

I Part of electronic health record data on 12,000 adult
patients admitted to the intensive care units (ICU) in Ohio
State University Medical Center from 2007 to 2010

I Patients are classified as having one or more diseases of
over 800 disease categories from the International
Classification of Diseases (ICD-9).

I Interested in characterizing the co-morbidity as latent
factors, which can be used to define patient profiles for
prediction of other clinical outcomes (e.g. pressure ulcer)

I Analysis is based on a sample of 1,000 patients, which
reduced the number of disease categories to about 600



Deviance Explained by Components
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Figure: Cumulative and marginal percent of deviance explained by
principal components of LPCA, LSVD, and PCA



Deviance Explained by Parameters
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Figure: Cumulative percent of deviance explained by principal
components of LPCA, LSVD, and PCA versus the number of free
parameters



Predictive Deviance
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Figure: Cumulative and marginal percent of predictive deviance over
test data (1,000 patients) by the principal components of LPCA and
PCA



Interpretation of Loadings
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Figure: The first component is characterized by common serious
conditions that bring patients to ICU, and the second component is
dominated by diseases of the circulatory system (07’s).



Supervised Generalized PCA

I Extend generalized PCA to the supervised setting with a
response Y

I Represent predictors X by latent factor scores Θ̃X V and
predict Y with the scores

I Combine deviance for dimensionality reduction and
prediction and minimize:

D(Y ; Θ̃X Vβ)︸ ︷︷ ︸
prediction

+ α D(X ; Θ̃X VV>)︸ ︷︷ ︸
dim reduction

I Dimensionality reduction is a form of regularization



Matrix Factorization Approach

Rish et al. (2008), Closed-form supervised dimensionality
reduction with generalized linear models

I Extending Collins et al.’s matrix factorization of exponential
family data, consider a latent representation A of X through

ΘX = AB>

and relate A to Y

I Minimize a combination of dimensionality reduction and
prediction criteria

D(Y ; Aβ) + α D(X ; AB>)



Comparison of Two Approaches

I Representation of latent factor scores
I Previous method (GenSupMF): An×k

The number of parameters increases with the number of
observations

I Our method (GenSupPCA): Θ̃X Vp×k
The latent factor scores are interpretable as linear
combinations

I As α ↓ 0,
I GenSupMF: min D(Y ; Aβ)

Does not use covariates and fits Y perfectly

I GenSupPCA: min D(Y ; Θ̃X Vβ)
Reduces to GLM with Θ̃X V as covariates



Predicting on New Data

I GenSupMF requires solving for Anew with new data Xnew
I Given fixed B,

Anew = arg min
A

D(Xnew ; AB>)

I When Xnew = Xold for training, prediction will be different
from the original fit as the latter involves

min
A,B,β

D(Yold ; Aβ) + α D(Xold ; AB>)

I GenSupPCA only requires a linear combination of Θ̃Xnew

and predictions can be made online



Computation

I Minimize

D(Y ; Θ̃X Vβ) + α D(X ; Θ̃X VV>)

under the orthonormality constraint:

V>V = Ik

I Algorithm
1. With V fixed, find β via GLM fitting

2. With β fixed, minimize V over the Stiefel manifold Vk (Rp)

(Used a gradient based method in Wen and Yin (2013) for
orthonormal V )

3. Repeat until convergence



Concluding Remarks

I Generalized PCA via projections of the natural parameters
of the saturated model using GLM framework

I Proposed a supervised dimensionality reduction method
for exponential family data by combining generalized PCA
for covariates and a generalized linear model for a
response

I Impose other constraints on the loadings than rank for
desirable properties (e.g. sparsity)

I R package, logisticPCA is available at CRAN and
generalizedPCA and genSupPCA are available at GitHub
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