Dimensionality Reduction for Exponential Family Data

Yoonkyung Lee* Department of Statistics The Ohio State University *joint work with Andrew Landgraf

July 2-6, 2018 Computational Strategies for Large-Scale Statistical Data Analysis Workshop ICMS, Edinburgh, UK

Patient-Diagnosis Matrix

Patients 10 1112 13 1416 01 02 04 05 06 17 Е 03 07 08 09 T V Diseases

Data source: ICU patients at OSU Medical Center (2007-2010)

Questions

- How to characterize common factors underlying a set of binary variables?
- Can we apply PCA to binary data?

Any implicit link between PCA and Gaussian distributions?

- How to extend PCA to exponential family data?
- Should we define those factors differently if prediction of a response is concerned?

(ロ) (同) (三) (三) (三) (○) (○)

How to make use of the response?

Outline

Dimensionality reduction for non-Gaussian data

{exponential family PCA, generalized PCA}

 Supervised dimensionality reduction for exponential family data

{supervised generalized PCA, supervised matrix factorization}

Generalization of PCA

Collins et al. (2001), A generalization of principal components analysis to the exponential family

- Draws on the ideas from the exponential family and generalized linear models
- For Gaussian data, assume that x_i ~ N_p(θ_i, I_p) and θ_i ∈ ℝ^p lies in a k dimensional subspace:

for a basis
$$\{b_\ell\}_{\ell=1}^k, \quad heta_i = \sum_{\ell=1}^k a_{i\ell} b_\ell = B_{p \times k} a_i$$

To find Θ = [θ_{ij}], maximize the log likelihood or equivalently minimize the negative log likelihood (or deviance):

$$\sum_{i=1}^{n} \|x_i - \theta_i\|^2 = \|X - \Theta\|_F^2 = \|X - AB^{\top}\|_F^2$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Generalization of PCA

- ► According to Eckart-Young theorem, the best rank-*k* approximation of $X (= U_{n \times p} D_{p \times p} V_{p \times p}^{\top})$ is given by the rank-*k* truncated singular value decomposition $U_k D_k V_k^{\top}$
- For exponential family data, factorize the matrix of natural parameter values ⊖ as AB^T with rank-k matrices A_{n×k} and B_{p×k} (of orthogonal columns) by maximizing the log likelihood
- ► For binary data $X = [x_{ij}]$ with $P = [p_{ij}]$, "logistic PCA" looks for a factorization of $\Theta = \left[\log \frac{p_{ij}}{1-p_{ij}}\right] = AB^{\top}$ that maximizes

$$\ell(X;\Theta) = \sum_{i,j} \left\{ x_{ij}(a_i^{\top}b_{j*}) - \log(1 + \exp(a_i^{\top}b_{j*})) \right\}$$

subject to $B^{\top}B = I_k$

4 日 > 4 回 > 4 回 > 4 回 > 1 回 の へ の

Drawbacks of the Matrix Factorization Formulation

- Involves estimation of both case-specific (or row-specific) scores A and variable-specific (or column-specific) factors B: more of extension of SVD than PCA
- The number of parameters increases with the number of observations
- The scores of generalized PC for new data involve additional optimization while PC scores for standard PCA are simple linear combinations of the data

(ロ) (同) (三) (三) (三) (○) (○)

Alternative Interpretation of Standard PCA

Assuming that data are centered, minimize

$$\sum_{i=1}^{n} \|x_i - VV^{ op}x_i\|^2 = \|X - XVV^{ op}\|_F^2$$

subject to $V^{\top}V = I_k$

- ➤ XVV^T can be viewed as a rank-k projection of the matrix of natural parameters ("means" in this case) of the saturated model Õ (best possible fit) for Gaussian data
- Standard PCA finds the best rank-k projection of Õ by minimizing the deviance under Gaussian distribution

Natural Parameters of the Saturated Model

For an exponential family distribution with natural parameter θ and pdf

$$f(x|\theta) = \exp(\theta x - b(\theta) + c(x)),$$

 $E(X) = b'(\theta)$ and the canonical link function is the inverse of b'.

	θ	b(heta)	canonical link
$N(\mu, 1)$	μ	$\theta^2/2$	identity
Bernoulli(<i>p</i>)	logit(p)	$\log(1 + \exp(\theta))$	logit
Poisson(λ)	$\log(\lambda)$	$\exp(heta)$	log

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Take $\tilde{\Theta} = [\text{canonical link}(x_{ij})]$

New Formulation of Logistic PCA

Landgraf and Lee (2015), *Dimensionality Reduction for Binary* Data through the Projection of Natural Parameters

Given x_{ij} ~ Bernoulli(p_{ij}), the natural parameter (logit p_{ij}) of the saturated model is

$$ilde{ heta}_{ij} = \mathsf{logit}(x_{ij}) = \infty imes (2x_{ij} - 1)$$

We will approximate $\tilde{\theta}_{ij} \approx m \times (2x_{ij} - 1)$ for large m > 0

Project Õ to a k-dimensional subspace by using the deviance D(X; ⊙) = −2{ℓ(X; ⊙) − ℓ(X; Õ)} as a loss:

$$\min_{V \in \mathbb{R}^{p \times k}} \frac{D(X; \underbrace{\tilde{\Theta} V V^{\top}}_{\hat{\Theta}}) = -2 \sum_{i,j} \left\{ x_{ij} \hat{\theta}_{ij} - \log(1 + \exp(\hat{\theta}_{ij})) \right\}$$

subject to $V^{\top}V = I_k$

4 日 > 4 回 > 4 回 > 4 回 > 1 回 の へ の

Logistic PCA vs Logistic SVD

The previous logistic SVD (matrix factorization) gives an approximation of logit P:

 $\hat{\Theta}_{LSVD} = \boldsymbol{A}\boldsymbol{B}^{\top}$

Alternatively, our logistic PCA gives

$$\hat{\Theta}_{LPCA} = \underbrace{\tilde{\Theta}}_{A} V^{\top},$$

which has much fewer parameters

- Computation of PC scores on new data only requires matrix multiplication for logistic PCA while logistic SVD requires fitting k-dimensional logistic regression for each new observation
- Logistic SVD with additional A is prone to overfit

Geometry of Logistic PCA

Figure: Logistic PCA projection in the natural parameter space with m = 5 (left) and in the probability space (right) compared to the PCA projection

New Formulation of Generalized PCA

Landgraf and Lee (2015), *Generalized PCA: Projection of Saturated Model Parameters*

- The idea can be applied to any exponential family distribution
- Project the matrix of natural parameters from the saturated model Õ to a k-dimensional subspace by using the deviance D(X; Õ) = −2{ℓ(X; Õ) − ℓ(X; Õ)} as a loss:

$$\min_{V\in\mathbb{R}^{p\times k}} D(X; \underbrace{\tilde{\Theta}VV^{\top}}_{\hat{\Theta}})$$

subject to
$$V^{ op}V = I_k$$

If desired, main effects µ can be added to the approximation of Θ:

$$\hat{\boldsymbol{\Theta}} = \mathbf{1}\boldsymbol{\mu}^{\top} + (\tilde{\boldsymbol{\Theta}} - \mathbf{1}\boldsymbol{\mu}^{\top})\boldsymbol{V}\boldsymbol{V}^{\top}$$

MM Algorithm for Generalized PCA

- Majorize the objective function with a simpler objective at each iterate, and minimize the majorizing function. (Hunter and Lange, 2004)
- From the quadratic approximation of the Bernoulli deviance at Θ^(t), step t solution, and the fact that p(1 − p) ≤ 1/4,

$$D(X; \mathbf{1}\mu^{\top} + (\tilde{\Theta} - \mathbf{1}\mu^{\top})VV^{\top})$$

$$\leq \frac{1}{4} \|\mathbf{1}\mu^{\top} + (\tilde{\Theta} - \mathbf{1}\mu^{\top})VV^{\top} - Z^{(t+1)}\|_{F}^{2} + C,$$
where $Z^{(t+1)} = \Theta^{(t)} + 4(X - \hat{P}^{(t)})$

► Update Θ at step (t + 1): averaging for µ^(t+1) given V^(t) and eigen-analysis of a p × p matrix for V^(t+1) given µ^(t+1)

Medical Diagnosis Data

- Part of electronic health record data on 12,000 adult patients admitted to the intensive care units (ICU) in Ohio State University Medical Center from 2007 to 2010
- Patients are classified as having one or more diseases of over 800 disease categories from the International Classification of Diseases (ICD-9).
- Interested in characterizing the co-morbidity as latent factors, which can be used to define patient profiles for prediction of other clinical outcomes (e.g. pressure ulcer)
- Analysis is based on a sample of 1,000 patients, which reduced the number of disease categories to about 600

Deviance Explained by Components

Figure: Cumulative and marginal percent of deviance explained by principal components of LPCA, LSVD, and PCA

Deviance Explained by Parameters

Figure: Cumulative percent of deviance explained by principal components of LPCA, LSVD, and PCA versus the number of free parameters

Predictive Deviance

Figure: Cumulative and marginal percent of predictive deviance over test data (1,000 patients) by the principal components of LPCA and PCA

Interpretation of Loadings

Figure: The first component is characterized by common serious conditions that bring patients to ICU, and the second component is dominated by diseases of the circulatory system (07's).

(日)

Supervised Generalized PCA

- Extend generalized PCA to the supervised setting with a response Y
- Combine deviance for dimensionality reduction and prediction and minimize:

$$\underbrace{D(Y; \tilde{\Theta}_X V \beta)}_{\text{prediction}} + \alpha \underbrace{D(X; \tilde{\Theta}_X V V^{\top})}_{\text{dim reduction}}$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Dimensionality reduction is a form of regularization

Matrix Factorization Approach

Rish et al. (2008), *Closed-form supervised dimensionality* reduction with generalized linear models

Extending Collins et al.'s matrix factorization of exponential family data, consider a latent representation A of X through

$$\Theta_X = AB^{\top}$$

and relate A to Y

 Minimize a combination of dimensionality reduction and prediction criteria

$$D(Y; A\beta) + \alpha D(X; AB^{\top})$$

(ロ) (同) (三) (三) (三) (○) (○)

Comparison of Two Approaches

- Representation of latent factor scores
 - Previous method (GenSupMF): A_{n×k} The number of parameters increases with the number of observations

- ► Our method (GenSupPCA): Õ_X V_{p×k} The latent factor scores are interpretable as linear combinations
- As $\alpha \downarrow 0$,
 - ► GenSupMF: min D(Y; Aβ) Does not use covariates and fits Y perfectly
 - GenSupPCA: min D(Y; Θ_XVβ)
 Reduces to GLM with Θ_XV as covariates

Predicting on New Data

- GenSupMF requires solving for A_{new} with new data X_{new}
 - Given fixed B,

$$A_{new} = \arg\min_{A} D(X_{new}; AB^{\top})$$

When X_{new} = X_{old} for training, prediction will be different from the original fit as the latter involves

$$\min_{A,B,\beta} D(Y_{old}; A\beta) + \alpha D(X_{old}; AB^{\top})$$

► GenSupPCA only requires a linear combination of Õ_{Xnew} and predictions can be made online

Computation

Minimize

$$D(Y; \tilde{\Theta}_X V \beta) + \alpha D(X; \tilde{\Theta}_X V V^{\top})$$

under the orthonormality constraint:

$$V^{\top}V = I_k$$

Algorithm

- 1. With V fixed, find β via GLM fitting
- 2. With β fixed, minimize V over the Stiefel manifold $\mathcal{V}_k(\mathbb{R}^p)$

(Used a gradient based method in Wen and Yin (2013) for orthonormal V)

3. Repeat until convergence

Concluding Remarks

- Generalized PCA via projections of the natural parameters of the saturated model using GLM framework
- Proposed a supervised dimensionality reduction method for exponential family data by combining generalized PCA for covariates and a generalized linear model for a response
- Impose other constraints on the loadings than rank for desirable properties (e.g. sparsity)
- R package, logisticPCA is available at CRAN and generalizedPCA and genSupPCA are available at GitHub

Acknowledgments

Andrew Landgraf @ Battelle Memorial Institute

Sookyung Hyun and Cheryl Newton @ College of Nursing, OSU

▲□▶▲□▶▲□▶▲□▶ □ のQ@

DMS-15-13566

References

Collins, M., S. Dasgupta, and R. E. Schapire (2001).

A generalization of principal components analysis to the exponential family. In T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14, pp. 617–624.

Landgraf, A. J. and Y. Lee (2015a).

Dimensionality reduction for binary data through the projection of natural parameters. Technical Report 890, Department of Statistics, The Ohio State University. Also available at arXiv:1510.06112.

Landgraf, A. J. and Y. Lee (2015b).

Generalized principal component analysis: Projection of saturated model parameters. Technical Report 892, Department of Statistics, The Ohio State University.

Rish, I., G. Grabarnik, G. Cecchi, F. Pereira, and G. J. Gordon (2008).

Closed-form supervised dimensionality reduction with generalized linear models. In Proceedings of the 25th International Conference on Machine Learning, pp. 832–839. ACM.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Wen, Z. and W. Yin (2013).

A feasible method for optimization with orthogonality constraints. *Mathematical Programming* 142(1-2), 397–434.