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Data source: ICU patients at OSU Medical Center (2007-2010)



Questions
» How to characterize common factors underlying a set of
binary variables?
» Can we apply PCA to binary data?
Any implicit link between PCA and Gaussian distributions?
» How to extend PCA to exponential family data?

» Should we define those factors differently if prediction of a
response is concerned?

How to make use of the response?



Outline

» Dimensionality reduction for non-Gaussian data

{exponential family PCA, generalized PCA}

» Supervised dimensionality reduction for exponential family
data

{supervised generalized PCA, supervised matrix factorization}



Generalization of PCA
Collins et al. (2001), A generalization of principal components
analysis to the exponential family

» Draws on the ideas from the exponential family and
generalized linear models

» For Gaussian data, assume that x; ~ Np(0;, 1) and 6; € RP
lies in a k dimensional subspace:

K
for a basis {b;};_y, 0= aigby=B,..a
=1

» To find © = [#;], maximize the log likelihood or equivalently
minimize the negative log likelihood (or deviance):

ZHX/—GHz IX — ©l|F = [1X — AB" ||



Generalization of PCA

» According to Eckart-Young theorem, the best rank-k
approximation of X(= UnXprXprTXp) is given by the
rank-k truncated singular value decomposition Uy Dy VkT

N
A BT

» For exponential family data, factorize the matrix of natural

parameter values © as AB" with rank-k matrices A, x and

B,k (of orthogonal columns) by maximizing the log
likelihood

» For binary data X = [x;] with P = [p;], “logistic PCA” looks
for a factorization of © = [Iog f—ffpy} = AB' that maximizes

10x0) = 3-{(a by - log(1 + expla b))
i

subjectto BT B = I



Drawbacks of the Matrix Factorization Formulation

» Involves estimation of both case-specific (or row-specific)
scores A and variable-specific (or column-specific) factors
B: more of extension of SVD than PCA

» The number of parameters increases with the number of
observations

» The scores of generalized PC for new data involve
additional optimization while PC scores for standard PCA
are simple linear combinations of the data



Alternative Interpretation of Standard PCA

» Assuming that data are centered, minimize
n
3% = WTxill2 = | X - XVVT|2
i=1

subjectto VTV = I

» XVVT can be viewed as a rank-k projection of the matrix
of natural parameters (“means” in this case) of the
saturated model © (best possible fit) for Gaussian data

» Standard PCA finds the best rank-k projection of © by
minimizing the deviance under Gaussian distribution



Natural Parameters of the Saturated Model

» For an exponential family distribution with natural
parameter 6 and pdf

f(x]0) = exp (0x — b(0) + c(x)),

E(X) = b/(0) and the canonical link function is the inverse

of b'.
|0 b(6) canonical link
N(u, 1) 1 62/2 identity
Bernoulli(p) | logit(p) log(1 + exp(#)) logit
Poisson(\) log(A) exp(0) log

» Take © = [canonical link(x;)]



New Formulation of Logistic PCA

Landgraf and Lee (2015), Dimensionality Reduction for Binary
Data through the Projection of Natural Parameters

» Given x; ~ Bernoulli(pj;), the natural parameter (logit pj)
of the saturated model is

é,’j = |Og|t(X,/) =00 X (2X,‘j — 1)

We will approximate /7,'/ ~ mx (2x; — 1) for large m > 0

» Project © to a k-dimensional subspace by using the
deviance D(X;0) = -2{¢(X;0©) — {(X;©)} as a loss:

Vg]}glpxk D(X @ V@V = -2 ;{x;jﬂij — |Og(1 + exp(e,]-))}

subjectto VTV = I,



Logistic PCA vs Logistic SVD

» The previous logistic SVD (matrix factorization) gives an
approximation of logit P:

OLsvp = AB'
» Alternatively, our logistic PCA gives

éLPCA:Q/\_/,V‘a
A

which has much fewer parameters
» Computation of PC scores on new data only requires
matrix multiplication for logistic PCA while logistic SVD

requires fitting k-dimensional logistic regression for each
new observation

» Logistic SVD with additional A is prone to overfit



Geometry of Logistic PCA
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Figure: Logistic PCA projection in the natural parameter space with
m = 5 (left) and in the probability space (right) compared to the PCA

projection



New Formulation of Generalized PCA

Landgraf and Lee (2015), Generalized PCA: Projection of
Saturated Model Parameters

» The idea can be applied to any exponential family
distribution

» Project the matrix of natural parameters from the saturated
model © to a k-dimensional subspace by using the
deviance D(X;0) = -2{¢(X;0©) — {(X;©)} as a loss:

min  D(X; eva)

VERPXK v
6

subjectto VTV = I,

» If desired, main effects y can be added to the
approximation of ©:

O=1u" + (B -1u")wT



MM Algorithm for Generalized PCA

» Majorize the objective function with a simpler objective at
each iterate, and minimize the majorizing function.
(Hunter and Lange, 2004)

» From the quadratic approximation of the Bernoulli deviance
at ©(), step t solution, and the fact that p(1 — p) < 1/4,

DA MESCES A
%Hh/ + (& -1HwT —zEN 2 4 ¢
where Z(t+1) = o) 4 4(x — p1)

IN

» Update © at step (t+ 1):
averaging for x(tt1) given V() and
eigen-analysis of a p x p matrix for V(+1) given p(t+1)



Medical Diagnosis Data

» Part of electronic health record data on 12,000 adult
patients admitted to the intensive care units (ICU) in Ohio
State University Medical Center from 2007 to 2010

» Patients are classified as having one or more diseases of
over 800 disease categories from the International
Classification of Diseases (ICD-9).

» Interested in characterizing the co-morbidity as latent
factors, which can be used to define patient profiles for
prediction of other clinical outcomes (e.g. pressure ulcer)

» Analysis is based on a sample of 1,000 patients, which
reduced the number of disease categories to about 600



Deviance Explained by Components
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Figure: Cumulative and marginal percent of deviance explained by
principal components of LPCA, LSVD, and PCA




Deviance Explained by Parameters
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Figure: Cumulative percent of deviance explained by principal
components of LPCA, LSVD, and PCA versus the number of free
parameters



Predictive Deviance
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Figure: Cumulative and marginal percent of predictive deviance over
test data (1,000 patients) by the principal components of LPCA and
PCA



Interpretation of Loadings
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Figure: The first component is characterized by common serious
conditions that bring patients to ICU, and the second component is
dominated by diseases of the circulatory system (07’s).



Supervised Generalized PCA

» Extend generalized PCA to the supervised setting with a
response Y

» Represent predictors X by latent factor scores ©  / and
predict Y with the scores

» Combine deviance for dimensionality reduction and
prediction and minimize:

D(Y;0xVB)+a D(X;0xVVT)

prediction dim reguction

» Dimensionality reduction is a form of regularization



Matrix Factorization Approach

Rish et al. (2008), Closed-form supervised dimensionality
reduction with generalized linear models

» Extending Collins et al.’s matrix factorization of exponential
family data, consider a latent representation A of X through

©x = ABT
and relate Ato Y

» Minimize a combination of dimensionality reduction and
prediction criteria

D(Y;AB)+ o D(X;AB")



Comparison of Two Approaches

» Representation of latent factor scores

» Previous method (GenSupMF): A, «
The number of parameters increases with the number of
observations

» Our method (GenSupPCA): Oy V.,
The latent factor scores are interpretable as linear
combinations

» Asa | 0,
» GenSupMF: min D(Y;AB)
Does not use covariates and fits Y perfectly

» GenSupPCA: min D(Y;6Vp3)
Reduces to GLM with ©x V as covariates



Predicting on New Data

» GenSupMF requires solving for Anpew With new data Xnew
» Given fixed B,

Apew = arg mjn D(Xnew; ABT)

» When Xqow = Xog for training, prediction will be different
from the original fit as the latter involves

/r\T]BI.,nB D(Yoiw; AB) + o D(Xoig; AB )

» GenSupPCA only requires a linear combination of O,
and predictions can be made online



Computation

» Minimize
D(Y;6xVB)+ a D(X;6xWVT)
under the orthonormality constraint:
Vv =1,

» Algorithm
1. With V fixed, find 3 via GLM fitting

2. With g3 fixed, minimize V over the Stiefel manifold Vi (RP)

(Used a gradient based method in Wen and Yin (2013) for
orthonormal V)

3. Repeat until convergence



Concluding Remarks

» Generalized PCA via projections of the natural parameters
of the saturated model using GLM framework

» Proposed a supervised dimensionality reduction method
for exponential family data by combining generalized PCA
for covariates and a generalized linear model for a
response

» Impose other constraints on the loadings than rank for
desirable properties (e.g. sparsity)

» R package, logisticPCA is available at CRAN and
generalizedPCA and genSupPCA are available at GitHub
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